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Abstract 
Worldwide, floods have major impacts on people, economies, and the environment. In Myanmar, floods 
are a prominent hazard, with frequent extreme inundation heavily affecting people and their livelihoods. 
Flood risk assessments for Myanmar on the national scale are scarce, and none examine risk from 
major flood events, yet these are crucial for planning disaster risk reduction. Here we present the first 
indicator-based risk assessment for a flood event with a 100-year return period at the township level for 
Myanmar. Our results show that hazard and exposure of people logically follow the pattern of the rivers, 
however vulnerability to flooding is widespread across the whole country. Using multiplicative 
aggregation of exposure and vulnerability, and overlaying quantiles of varying severity of these 
elements to determine risk, it is evident that risk is concentrated in the Ayeyarwady, Bago, and Rakhine 
states. By incorporating elements of hazard, exposure, and vulnerability, this assessment also reveals 
factors that contribute to flood risk, and can be used by decision makers to guide effective disaster risk 
reduction activities.  
 

Highlights 

• High risk townships are concentrated in Ayeyarwady, Bago regions and Rakhine States. 

• Vulnerability arises from poverty, poor health care access, and poor road networks. 

• Population centers e.g. Yangon and Mandalay cities, have high exposure to flooding. 

• Flood risk is driven by exposure in the multiplicative index-based approach. 
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1. Introduction 
As a country highly affected by extreme weather events, understanding risk in Myanmar is 

extremely important. Floods are the most frequently occurring hazard and have the highest contribution 
to average annual loss compared to all other hazards for the country (ADPC, 2015). In the last 10 years, 
three major flood events caused high levels of damage and each resulted in over 100 fatalities (Guha-
Sapir 2020). In 2015, a riverine flood resulted in over US$1 billion in damages, affected over 1.6 million 
people, and caused at least 149 deaths (Guha-Sapir 2020). With climate change, Myanmar is likely to 
continue to experience river flood events at the scale of the 2015 floods or worse (Hirabayashi et al. 
2013).   

Riverine flooding occurs when water rises over the top of riverbanks and spills into the 
surrounding area (Nasiri, Yusof, and Ali 2016). In Myanmar some river flooding occurs almost every 
year with the monsoon season and communities now rely on these floods for nutrient deposition on 
their agricultural fields (Taft and Evers 2016). Communities have learnt to cope with and have adapted 
to these annual floods, harnessing their value (Taft and Evers 2016). However, as demonstrated by the 
impact of the 2015 flood which was characterized to be of a 20-50 year return period (MMPF, 2017), 
Myanmar has little capacity to cope with major flood events.  

To reduce flood risk decision makers must have a holistic understanding of the underlying factors. 
The Sendai Framework for Disaster Risk Reduction calls for disaster risk management that takes into 
account all dimensions of disaster risk, including hazard, exposure, and vulnerability (UN-DESA 2015). 
With comprehensive risk assessments decision makers are better placed to understand the 
components that contribute to flood risk and work to reduce its impact.  

While flood risk assessments using various techniques such as univariate deterministic modeling, 
probabilistic modelling and damage functions, and index based approaches are becoming more 
common globally (e.g. Mondal et al., 2020; Nguyen et al., 2018; Pinos et al., 2020), the state of the art 
is not well developed in Myanmar. Analysis has mostly focused on flood loss estimation (Zin et al. 2020), 
2020), flood hazard mapping (Khaing et al. 2019), flood hazard mitigation (Acierto et al. 2018; Lin, 
Rutten, and Tian 2018), resilience after flood events (Jones and Ballon 2020), or future vulnerability to 
flooding under climate change and land use change scenarios at the state level (Mandle et al., 2017; 
Oo et al., 2018a, 2018b; Sritarapipat & Takeuchi, 2018). One recent paper examined flood risk on a 
national scale for Myanmar (Phongsapan et al. 2019). This paper modelled hazard based on the 
frequency of flooding from 1984 – 2015 and incorporated factors of exposure and vulnerability through 
an index-based risk assessment.  

So far there are no risk assessments for major flood events at the national scale. We aim to 
contribute to the broader literature on flood risk in Myanmar and fill this gap by conducting a national, 
index-based risk assessment at the township administrative level, for a riverine flood with a 100-year 
return period. There are two main objectives of the paper. First, this analysis will show the spatial 



2 
 

distribution of major river flood risk based on the IPCC framing of risk (IPCC 2014b). Second, it will 
highlight factors of vulnerability that contribute to risk. Together these can be used for decision making 
for effective flood risk reduction. 
 

2. Methods and Materials 
2.1. Case Study 

Myanmar is located in south-east Asia (Figure 1). Its 
land size is approximately 678,500 km2 and it has an 
estimated population of 42.5 million people (Oo et al., 2020). 
The country has a complex multi-level governance system with 
330 townships at the lowest level of government (Batcheler et 
al. 2018). Much of the population in Myanmar live in poverty 
(MMPF, 2017) and the country was ranked 145 out of 189 in 
the Human Development Index in 2019 (UNDP 2019). There 
are four major rivers in Myanmar with populations reliant on 
each (Taft and Evers 2016). The Ayeyarwady is the largest and 
the most important used in commerce and daily life (Taft and 
Evers 2016). Most of the country has a tropical monsoon 
climate, with river floods commonly occurring between May to 
October (FAO 2016; Taft and Evers 2016). 
 
2.2. Conceptual framework 

This paper built on the general risk framework from the 
IPCC 5th assessment report, where risk is the potential for 
adverse consequences and is a function of hazard, exposure, 
and vulnerability (IPCC 2014a). In this analysis we focused on 
present day flood risk to people. Exposure was defined as the 
presence of people within the extent of the hazard (IPCC 
2014a) – a 100-year flood event. Vulnerability was defined as 
the propensity or predisposition of the Myanmar people to be 
adversely affected and encompassed the components of 
susceptibility and coping capacity (based on the definition in 
IPCC, 2014a).  
 
2.3. Workflow 

Figure 2 outlines the workflow of the quantitative index-based approach for the township level 
used in this analysis. All data was freely available allowing for replication and validation of this study.  

 

 
Figure 2. Workflow showing method to determine risk derived from OECD, (2008) and Hagenlocher et al., (2018). 

Figure 1. Myanmar with labelled states. Townships 

are the next administrative level down.  
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2.3.1. Flood hazard/exposure 
River flood extent for a 100 year return period was obtained from The Global Risk Data Platform 

(https://preview.grid.unep.ch/). ArcGIS was used to crop the global dataset to the national boundaries 
of Myanmar and limit the extent of the flooding to modelled depth above 20 centimetres.  

To calculate hazard exposure, we determined the percentage of exposed population per 
township (𝑒_𝑠𝑜𝑐𝑖) based on the modelled population distribution from WorldPop (WorldPop, 2016) 
(𝑝_𝑡𝑜𝑡𝑖), and the population within the flood extent (𝑝_𝑒𝑥𝑝𝑖) (Equation 1. i refers to each township).  

 
 

The percentage of exposed population was normalized using linear min-max (Equation 2) so that 
the range was reduced to between one (high exposure) and zero (no exposure) to create the exposure 
index (𝐸𝐼𝑖). This is a very common normalisation method for indicator based assessments (Beccari 
2016). 

 
 

In Equation 2, 𝐸𝑖
  refers to the percentage of exposed population before transformation, 𝐸𝑚𝑖𝑛 

refers to the minimum value of exposure, and 𝐸𝑚𝑎𝑥  refers to the maximum value of exposure.  
 
2.3.2. Flood vulnerability 

To identify relevant indicators, a systematic literature review was conducted to understand the 
main drivers and causes of flood vulnerability in Myanmar. Two searches were conducted using Web 
of Science (WoS) and SCOPUS in May 2020. Search strings were constructed based on the logic in 
Sebesvari et al. (2016). The authors separately screened all titles and abstracts of the unique papers 
to determine relevance. Criteria included: focus on Myanmar; risk and vulnerability to flood; and the 
exposure of people. Publications that met these criteria were selected. Papers that did not were 
excluded, including those that focused solely on flood hazard. Where one or both authors were 
uncertain, the paper was read entirely by the authors to determine selection. To find additional grey 
literature a Google search was conducted. After screening the first 10 pages of results two reports were 
added to the literature review. At the end of the process, 33 papers were included for final review. A 
summary of searches is provided in Table 1.  

 
Table 1. Search terms used to capture papers to inform vulnerability indicator identification. 

 
Search strings use SCOPUS operators. For WoS, TOPIC replaced TITLE-ABS-KEY. TITLE remained the same. 

 
Each pertinent study was reviewed to pinpoint elements influencing vulnerability to flooding in 

Myanmar. These elements were categorized into indicators of susceptibility and coping capacity. 
Subsequently, township-level data were gathered from various sources, such as the 2014 census and 
additional surveys. Given the data at hand, 19 indicators were selected for inclusion in the conclusive 
evaluation (Table 2). Supplementary material I offers a summary of all sought-after indicators identified 
during the literature review, along with the origins of the data for those utilized. 

https://preview.grid.unep.ch/
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Table 2. Final list of indicators including code, data source, and direction. 

 
 
The indicators concerning access to telephones, the internet, mobile devices, and radios were 

consolidated into a single information indicator (c_ati), while data on inadequately built floors and walls 
were combined to form a singular housing conditions indicator (s_wfl). Additionally, information on 
households possessing generators and solar energy was merged into an indicator for access to 
alternative electricity (c_aes). Proxy variables were employed for s_pov, s_vec, s_chr, s_con, c_ati, and 
s_wfl. (for more information, see Supplementary Material I). 

In the third phase, outliers were detected and addressed according to the method outlined in 
(Damioli 2017), utilizing Microsoft Excel. Box plots, leveraging the interquartile range along with 
skewness and kurtosis measurements, facilitated the identification of extreme values. Given the limited 
data available for triangulation to ascertain if these extreme values were inaccuracies, the specialized, 
local knowledge of one of the contributors was applied. It was concluded that only five indicators 
contained outlier values attributed to errors (s_pov, s_vec, s_chr, s_fhh, and c_doc), which were 
corrected through winsorization. (see Supplementary Material II).  
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In the fourth step, the extent of missing data was evaluated. Drawing on insights from Downey & 
King (1998) and Roth et al. (1999) regarding tolerable limits for missing data, no indicators were omitted 
since all had missing data below 20%. However, ten townships exhibited missing data exceeding 20% 
and were thus labeled as highly uncertain in the ultimate risk and vulnerability evaluations. The missing 
data were compensated for by employing the Inverse Distance Weighting (IDW) tool in ArcGIS and 
calculating the average from the generated results. 

In the fifth stage, an analysis of multicollinearity was performed employing Kendall’s Tau and a 
two-tailed method for determining statistical significance in SPSS (IBM SPSS Statistics), a method 
frequently applied to data that is not normally distributed (Puth et al. 2015) with r > 0.9 signifying 
datasets that are highly correlated (Hagenlocher et al. 2018). No concerns regarding collinearity were 
identified. (Supplementary Material II). 

As a sixth measure, the ultimate collection of indicators was normalized to a scale ranging from 
zero to one utilizing the linear min-max method. For indicators wherein, higher scores indicate greater 
vulnerability (positive directio n), Equation 3 was utilized. Conversely, for indicators where higher scores 
reduce vulnerability (negative direction), values were inverted following Equation 4. In Equation 3 and 
4, 𝑋𝑖 refers to the indicator value for a township (i) before transformation, 𝑋𝑚𝑖𝑛 refers to the minimum 
value of the indicator, 𝑋𝑚𝑎𝑥 refers to the maximum value of the indicator, and 𝑋𝑖

 ′ refers to the indicator 
value after transformation.  

 

  
 

 
 
Lastly, in the absence of specific insights into their relative significance, all indicators were 

assigned equal weights and combined through additive arithmetic aggregation to formulate the 
vulnerability index. 𝑉𝐼𝑖 (Equation 5). 

 

 
 
In Equation 5, 𝑋𝑖

 ′ denotes the normalised indicator values for the township and 𝑁 refers to the 
number of indicators.   

 
2.3.3. Flood risk 
2.3.3.1. Method one 

The vulnerability and exposure indices were combined through the application of two distinct 
methodologies. First, multiplicative arithmetic aggregation of hazard/exposure (𝐸𝐼𝑖) and vulnerability 
(𝑉𝐼𝑖) was conducted to determine relative risk for each township in a risk index (𝑅𝐼𝑖) (Equation 6).  

 

 
 
2.3.3.2. Post hoc analysis of method one 
Following the multiplicative combination of indicators, a correlation assessment was carried out to 
explore the potential link between risk and exposure or risk and vulnerability as a result of the first 
method. This analysis was performed using Kendall’s Tau in SPSS, and scatter plots were generated 
with Microsoft Excel. Additionally, histograms depicting the distribution of values within the exposure 
and vulnerability indices were produced in SPSS to offer further understanding. 
 
2.3.3.3. Method two 

For the second method to determine risk, we divided the exposure and vulnerability indexes into 
five quantiles with an equal number of townships. We overlaid different quantiles (Table 3) to show 
where varying levels of vulnerability and hazard/exposure intersect, to highlight where there were high 
levels of both. 
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Table 3. Quantile overlay 

 
 

3. Results 
3.1. Hazard exposure 

The analysis showed that the 100-year return period river flood hazard predictably followed the 
contours of the rivers in Myanmar (Figure 6a). The highly exposed populations and townships also 
bordered rivers, with most flooding in the Ayeyarwady region followed by the Bago, Mandalay, and 
Yangon regions (Figure 6b and context map). Populations in 27 townships were not exposed, however 
in 12 townships, 99 percent or more of the population were exposed to flooding. The capital city Nay 
Pyi Taw, and the former capital city Yangon, also had a high percent of the population exposed to 
flooding. 

 

 
 

Figure 3. Results showing (a) Spatial analysis of 100-year return period flood hazard and (b) exposure to people (classification 

for exposure: 5 quantiles between 0.001 and 1.0). (Context map insert: yellow=Rakhine, red=Bago, blue=Ayeyarwady & 
orange=Yangon). 

(a) 

(b) 
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3.2. Vulnerability 
Vulnerability was widespread through Myanmar (Figure 4). Our analysis showed that some 

vulnerability indicators were more critical than others (Figure 5). 
For the five most critical indicators, most townships had an index score between 1.0 and 0.9. 

Access to healthcare was poor with a maximum of one doctor and 51 hospital beds per 10000 people 
in 222 and 312 townships, respectively. Accessibility was also low for 290 townships with the density 
of roads between 0 to 2.82 (road kernel density: km road/km2, search radius = 5km). The percentage 
of households owning a boat, which are important for saving lives and transportation during flood 
events, was between zero and 4.86 percent in 242 townships. Poverty was also widespread. The 
average income for 312 townships was between 324225 to 3720021 Kyat (US$ 251 to US$2884), and 
14 townships had an average income below the 2015 poverty line of 475595 Kyat (US$ 369) (MMPF, 
2017).  

Among the remaining indicators, some contributed to vulnerability more than others. For access 
to alternative electricity sources such as solar panels and generators that are useful during the power 
shortages during floods, 199 townships had maximum of 20 percent of households with these facilities. 
However, conflict, vector borne diseases, and the literacy rate contributed less to vulnerability for most 
townships.  

Spatially, the most vulnerable townships were concentrated in the upper half of Myanmar. The 
majority of townships in the highest quantile were located in the Shan state, followed by Rakhine and 
Kachin states. Logically, the least vulnerable townships were concentrated in Yangon region, where the 
former capital of Myanmar, Yangon, is located. This was followed by the Mandalay region which has 
the second largest city, Mandalay, and the Nay Pyi Taw Union Territory which is the current capital city. 

 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Results showing spatial distribution of flood vulnerability in Myanmar. Classification: 5 quantiles between 0.25 and 
0.69. (Context map insert: yellow=Rakhine, dark blue=Shan, pink=Kachin, light green=Yangon, mid green=Mandalay, dark 

green=Nay Pyi Taw). 
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Figure 5. Median scores across townships for all vulnerability indicators. 

 
3.3. Risk 
3.3.1. Method one 

Figure 6a shows the spatial distribution of risk according to the multiplicative aggregation of 
vulnerability and exposure. Risk was highly concentrated in townships in the Ayeyarwady, Bago, and 
Rakhine regions. The seven townships with the highest risk index score are shown in Figure 6b. Due 
to the absence of exposure to the hazard, there were 27 townships that had zero risk.  

The elements contributing to risk for townships in the highest quantile were multi-faceted. 
Common elements included highly exposed populations between 50-100 percent, high levels of 
poverty, and a low number of hospital beds and doctors per 10000 people. Both urban and rural areas 
were present in the highest quantile with the travel time to the nearest city ranging from 0 to 440 minutes. 
Interestingly, townships with the highest risk experienced no conflict in the last year, and high literacy 
rates above 95 percent. 
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3.3.2. Post hoc analysis  

Figure 7 shows that in method one, exposure was strongly significantly correlated to risk (r =.94, 
p = < 0.001) (a), and weakly correlated to vulnerability although not significantly (r =.06, p = 0.093) (b). 
When looking at the distribution of vulnerability and exposure index scores, it is clear that exposure was 
more evenly distributed (c) whereas vulnerability clustered around a mid-point (d). 
 

Figure 6. Risk results from method one showing (a) Spatial distribution of flood risk at township level in Myanmar (classification: 
5 quantiles between 0.001 and 0.54) and (b) Map (not to scale) showing the location of the 7 most at risk townships according 

to method one (red). (Context map insert: blue=Ayeyarwady, light red =Bago, yellow=Rakhine). 
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Figure 7. Results of the post-hoc analysis showing (a) exposure is linearly related to risk; (b) vulnerability and risk have a weak 
relationship; (c) the distribution of exposure values is broad; (d) the distribution of vulnerability values clusters at the mid-point. 

 
3.3.3. Method two 

While risk was driven by exposure in the first method, in the second there was an equal 
representation of vulnerability and exposure in the risk visualization (Figure 8a). There were 7 townships 
with very high exposure and vulnerability (Figure 8b) and an additional 10 townships with very high 
exposure and high vulnerability. Administratively, these 17 townships mostly belonged to the 
Ayeyarwady, Bago, Yangon regions and Rakhine State. Every state except Kayah and Nay Pyi Taw 
had at least one township with a minimum of medium vulnerability and exposure (74 townships in total). 
Common characteristics of these townships were high levels of poverty, poor accessibility with low road 
density and low access to healthcare with low numbers of doctors and hospital beds per 10000 people. 
In addition, these townships had relatively high dependency ratios and low access to information.  
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Figure 8. Risk results from method two showing (a) Townships at risk based on the overlay of vulnerability and exposure 
quantiles and (b) Map (not to scale) showing townships with very high exposure and very high vulnerability (lines). (Context 

map insert: yellow=Rakhine, red=Bago, blue=Ayeyarwady & orange=Yangon). 

4. Discussion 
Our study aimed to conduct a conceptually supported risk assessment of river flooding in 

Myanmar to explore the spatial distribution of risk, and to understand the broad underlying factors of 
vulnerability that contribute to increased risk to aid decision making. Vulnerability is a fundamental 
element of risk and an adequate understanding of its dimensions and root causes is vital for constructive 
risk assessment and risk reduction (Schneiderbauer et al. 2017). A main finding in our analysis is that 
vulnerability to river flooding in Myanmar is primarily triggered by poverty and inadequate access to 
public infrastructure and services such as road networks, and health care. Although Myanmar has 
started the transition to a democracy, the underlying causes of poverty are still rooted in the centralized 
military rule that lasted for five decades (Hudson-Rodd et al. 2004; The Burma Fund 2003). The 
consequence of mismanagement of natural resources, state inefficiency, corruption in resource 
allocation, and social and economic insecurity is continued poverty and vulnerability in Myanmar 
(Thang, Uyen, and wa Mungai 2014). Moreover, ineffective governance and persistent high levels of 
poverty have resulted in a growing population living in unsafe areas, with poor infrastructure and 
housing conditions, contributing to compounding vulnerabilities (GUoM, 2015; World Bank, 2014). 
Widespread inadequate access to services that assist people in everyday life such as health care and 
alternative electricity sources has also reduced the potential for economic participation that enables 
people to escape from poverty, while further limiting capacities to cope and adapt to flooding (Hudson-
Rodd et al. 2004). Spatially, the highest vulnerability occurs in ethnically dominated border areas such 
as Shan, Kachin and Rakhine states where poverty and lack of access to services is especially severe 
due to the continuing conflicts and violence in the context of counter-insurgency activities (Hudson-
Rodd et al. 2004). This has resulted in a situation where it is difficult for people to pursue livelihoods 
and plan for the future, due to the lack of security (Hudson-Rodd et al. 2004). Social capital is 
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undermined by violence and development agencies and governments have struggled to make an 
impact as efforts are undermined by destruction of assets and continuing instability (Hudson-Rodd et 
al. 2004). Foreign investors are reluctant to consider these regions for their business activities further 
contributing to relative underdevelopment (Hudson-Rodd et al. 2004).  

A history of poor governance is also related to river flood exposure in Myanmar. Ongoing 
deforestation, farmland expansion, and unstructured or poorly planned land use change can be linked 
back to natural resource mismanagement and state inefficiencies (Bank, 2014; Oo et al., 2020). This 
has contributed to decreased flood plain areas and high levels of sedimentation and erosion in 
waterways, worsening flood hazard and increasing exposure of people and assets to floods (Khaing et 
al., 2021; Taft & Evers, 2016). This is particularly relevant for the Ayeyarwady region which has highest 
exposure to river flooding due to sedimentation moving through the river systems and settling in the flat 
deltaic area and the large number of people living and working in the flood plains (Taft and Evers 2016). 

Moving beyond a discussion of exposure and vulnerability as separate elements, when 
comparing the results of the two methods of presenting risk, it is evident that the designation of individual 
townships as high risk and the relationships between risk, exposure, and vulnerability, can be influenced 
by the methods used to calculate it. Between our approaches, the townships with highest risk were 
different, as were the factors contributing to it. In the first approach, there was a strong relationship 
between risk and exposure, while the range of vulnerability indicator scores for the townships in the 
highest risk quantile were more widely spread. This was due to the additive aggregation of the 
vulnerability indicators that resulted in compensability (OECD 2008) and a high proportion of townships 
with similar vulnerability scores. Conversely, exposure had a much broader range. Thus, when using 
multiplicative aggregation to calculate risk, exposure had a much greater influence. In the second 
method, the contribution of vulnerability and exposure was equally shared. For the most critical 
vulnerability indicators such poverty, road density and healthcare, the vulnerability indicator scores for 
high risk townships were concentrated at the higher end of the scale. Thus, due to the methodological 
variations and resulting drivers of risk, the determination of risk for each township was a different for 
each approach.  

However, looking at the spatial distribution of risk on the wider scale and the relative proportion 
of high-risk townships between states and regions, townships with high risk were concentrated in the 
Ayeyarwady, Bago and Rakhine states in both approaches. This can be explained by the high levels of 
vulnerability and exposure in each of these regions. The Ayeyarwady region is a delta region where 
populations are highly exposed to river flooding due to living and working on the flood plain (Taft and 
Evers 2016). The large proportion of people pursuing low paid agricultural or fishing livelihoods and the 
general lack of infrastructure in the region contributes to its vulnerability (Soe 2020; Thein et al. 2019). 
Bago State is also highly exposed as it is mostly low-lying, lacks downstream discharge capacity, and 
a major population center, Bago City, is located on one of the rivers’ natural levees (Komori et al. 2020). 
Here, people also pursue agricultural livelihoods and there has been little development of services or 
infrastructure (Shrestha and Htut 2016). In Rakhine State, populations are highly exposed to river 
flooding due the extreme rainfall from storms coming directly from the Bay of Bengal (Sarsycki and 
Towashiraporn 2020). Ongoing conflict and violence in the state has resulted in a highly vulnerable 
population as well (Hudson-Rodd et al. 2004).  

Either representation of risk can be used by authorities depending on their needs. As our 
conceptual framework specifies that risk results from the interaction of exposure and vulnerability, the 
second method may be more conceptually supported, pointing clearly to factors of vulnerability that 
contribute to townships at high risk, while incorporating exposure as well. This method can also be 
adjusted to show different overlapping levels of exposure and vulnerability to meet the requirements of 
the user. As they are presented here, both results can help determine which townships to prioritize 
resources for flood risk reduction by governmental and international humanitarian organizations. Our 
research also provides information on which vulnerability factors to focus for planning of flood risk 
reduction strategies. For example, according to our results flood risk reduction programs should 
consider reducing poverty and improving accessibility, health care, and access to alternative electricity 
sources. 

To validate our study, there is only one of other paper that considers flood risk on a national scale 
for Myanmar and incorporating exposure and vulnerability, by Phongsapan et al. (2019) (although a 
different framework and definitions were used). Both analyses showed that exposure is very high in 
Ayeyarwady and Yangon and that Shan state is the most vulnerable region. High risk regions that 
presented in all results were the Ayeyarwady Delta and Rakhine state. Areas of difference were in the 
far north and south of the country, where both our risk analysis showed areas with medium to high risk, 
however Phongsapan’s analysis showed low risk. Future work on flood risk assessment validation in 
Myanmar would be useful. Validation using loss and damage data may be difficult due to the paucity of 
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data on the scale required, however workshops with local risk experts could provide an alternative 
method. 

 While comprehensive, there are several significant limitations in this study and future work could 
focus on addressing these gaps. Conceptually, this study focuses on the risk of flooding to people, 
however in Myanmar many impacts of flooding arise from damages and losses to crops and croplands 
(GUoM, 2015; Taft & Evers, 2016; UN OCHA, 2015). To better comprehend flood risk and have a 
holistic understanding of drivers or methods for risk reduction, a social-ecological risk assessment is 
necessary. In addition, river floods do not occur in isolation to other hazards. This study considered 
river flooding, however coastal and pluvial floods are also common and can result in compound events 
(Taft and Evers 2016). Similarly, flooding has triggered other hazards such as landslides, resulting in 
greater impact (GUoM, 2015). This analysis provides insight into risk from river flooding, however 
consideration of multi-hazards would better determine risk levels (Marzocchi et al. 2012), and help 
inform programs or policy that targets risk from multiple hazards, improving outcomes for the people in 
Myanmar. A final conceptual limitation is that flood extent is only one characteristic of hazard that 
contributes to damage. Flood depth, duration, and velocity also contribute to the impact of floods (Lin 
et al. 2018; Liu, Siu, and Mitchell 2016). Consideration of these conceptual challenges in future risk 
assessments could improve the results.   

In addition to conceptual limitations, there are several data and knowledge-based limitations that 
should be considered when using this assessment, and addressed in the future. Firstly, the threshold 
of flood damage starting at 20 centimeters was arbitrary and more localized research is needed to 
understand at what height floods start to cause damage. Secondly, additive aggregation to create the 
vulnerability index resulted in the compensability of indicators. The extent to which indicators are 
compensable is unknown, and in some cases unlikely, for example high literacy rates offsetting low 
numbers of boats. Thirdly, equal weighting of indicators was used in the vulnerability analysis however, 
some indicators would be more important than others for flood vulnerability and risk. Fourthly, the 
accuracy of the population distribution from WorldPop was unclear as some townships had hundreds 
of thousands more, or less, people than were counted in the 2014 census without transparent 
justification. Lastly, indicator data were from different sources, collected in different years, some 
imputation was required, and data for every vulnerability indicator was not available, especially for 
coping capacity. The issues with data analysis explored here are common in index-based assessments 
(Fekete, 2012), and introduce uncertainty into the accuracy of the results. A sensitivity analysis such as 
analyzing the effects of missing indicators or alternative aggregation methods, and further validation 
analysis would help confirm our findings.  

Nevertheless, the results of our study are essential for local and national authorities and funding 
organizations as it is the first risk assessment with strong conceptual foundation of risk for Myanmar, 
incorporating a clear vulnerability perspective. It could be used to inform disaster risk reduction 
programs or develop risk transfer mechanisms for high risk hotspots. Our findings also stress the need 
for institutional reforms regarding corruption and effective governance due to their links with factors 
increasing vulnerability and flood risk. To better target flood risk reduction policies and programs at the 
township or community level, it is recommended to conduct further research to understand localized 
underlying causes of flooding hazard, exposure, and vulnerability in high risk areas, and increase the 
resilience of those communities. 
 

5. Conclusion 
This paper presents the first, conceptually sound risk assessment for major flooding in Myanmar 

showing risk at the township level. The findings highlight the value of incorporating the elements of 
hazard, exposure, and vulnerability to reveal the regions at high risk, and the factors driving critical 
levels of vulnerability that contribute to risk. This assessment also suggests the influence of underlying 
causes on present day vulnerability. The results of this assessment can be built upon, either through 
methodological or conceptual improvements, or by looking in more detail and at a finer resolution at the 
identified areas of high risk. Policies and programs can target the high-risk regions and critical factors 
of vulnerability identified in this assessment for effective disaster risk reduction in Myanmar as well.   
 
 
(MIMU 2014) 
(General Administration Department (GAD) n.d.) 
(The armed conflict location & event data project (ACLED) 2020) 
(Weiss et al. 2018) (Open Street Map (OSM) 2020)
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Supplementary material I 
Indicators 

Table A provides details of all the relevant indicators for flooding in Myanmar. Indicators that were not included due to lack of data are highlighted red. Direction refers to the 
impact of the indicator on vulnerability and risk. A positive (+) sign indicates that a higher score increases vulnerability and risk. A negative (-) sign indicates that a higher score 
decreases vulnerability and risk. 
 
Table A. List of desired indicators with references, data sources (where applicable), and justification.  

Social Exposure 

Category Indicator Code Direction References Data Source Justification Comments 

Exposure Percentage of the 

population exposed to 
river floods (%) 

s_exp + (IPCC 2014a) Hazard: UNEP Preview 

Population: WorldPop 
2020 (modelled)  

Without population exposure to a hazard there is no 

risk to the population. 

Hazard return period: 100-years 

Social susceptibility 

Category Indicator Code Direction References Data Source Justification Comments 

Poverty and 

inequality 

Dependency ratio (%) s_dep + (GUoM), 2015; A. T. Oo 

et al., 2018b; 
Phongsapan et al., 2019) 

Census 2014  Both young and elderly individuals often rely 

financially on the state or their families. They might 
require help during evacuations and are at a higher 
risk of contracting illnesses, including waterborne 

diseases.  

This demographic dependency 

is quantified by adding the 
populations under 15 years and 
over 65 years, then dividing by 

the population aged 16-64 years. 

 Average annual 
income 

s_pov + (GUoM), 2015; Win et 
al., 2018) 

General Administration 
Department Survey 

2016-17  

A low average income indicates that the township 
may lack access to goods, services, and 

opportunities, possessing minimal reserves to 
withstand economic shocks. Consequently, these 
areas will face challenges in rebounding after a flood 

event. 

Proxy for: Population below the 
poverty line (%) 

 Households with 
existing debt (%) 

s_deb + (GUoM), 2015; A. T. Oo 
et al., 2018a) 

- Existing debt limits the capacity to obtain additional 
credit following a flood, indicating financial strain 

within the community.  

 

 Minority population 

(%) 

s_min + (Burki 2015) - Minorities often encounter challenges in accessing 

education, employment, and credit due to structural 
inequalities. 

 

Disability and 

health status 

Proportion of 

population with a 
disability (%) 

s_dis + (GUoM), 2015) Census 2014  A high prevalence of individuals with disabilities 

places additional demands on communities owing to 
increased dependency, resulting in a greater need 
for assistance during floods. 

Disability defined by MIMU 

(2018) as seeing, hearing, 
walking, remembering. 

 Number of cases of 
malaria per 10,000 
people 

s_vec + (Burki 2015; Oo et al. 
2018a, 2018c; 
Phongsapan et al. 2019) 

General Administration 
Department Survey 
2016-17 

Vector-borne diseases amplify the health burden on 
communities. Floods expand breeding sites for 
disease vectors, further escalating the risk of 

contracting these illnesses. 

Proxy for: Population with a 
vector borne disease (%) 

 Percent share of the 
incidence of 

tuberculosis, 
dysentery, and 
hepatitis (%) 

s_chr + (Oo et al. 2018a) General Administration 
Department Survey 

2016-17 

Chronic diseases impair individuals' capacity to 
engage in activities that build capital and heighten 

the necessity for aid and specialized care during 
floods. 

Proxy for: Population with 
chronic illness (%) 

 Population 
undernourished (%) 

s_nou + (GUoM), 2015) - Undernourishment adversely affects education, 
employment, and health outcomes, hindering overall 

well-being and productivity. 

 

Gender Female-headed 
households (%) 

s_fhh + (GUoM), 2015; Kawasaki 
et al., 2020) 

Census 2014  Females' limited access to education, employment, 
land, and credit detrimentally influences the entire 

household's well-being and economic stability. 
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Stability/ 
conflict 

Number of conflict 
events per 10000 

people in the last year 

s_con + (GUoM), 2015) Conflict: The Armed 
Conflict Location & Event 

Data Project 
Population: WorldPop 

Conflict is highly pertinent to Myanmar, impacting 
individuals' capacity to attain livelihood objectives 

and ongoing instability severely hampers 
development initiatives. 

Proxy for: Population affected by 
conflict in townships (%) 

Time: June 1, 2019-June 1, 
2020. Includes: battles, 
explosions, riots, and violence 

against civilians. 

 Proportion of 
internally displaced 

persons (%) 

s_idp + (GUoM), 2015) -  
This population lacks a safety net, faces limited 

shelter options, and experiences emotional trauma.  

 

WASH Households with safe 

sanitation (%) 

s_san - (Boutry, 2017; GUoM), 

2015) 

Vulnerability assessment 

2018 based on Census 
2014  

Poor sanitation contributes to adverse health 

outcomes. Unsealed sanitation facilities can 
contaminate waterways during floods, exacerbating 
health risks further. 

Defined by MIMU (2018) as flush 

and improved pit latrine.  

 Households access to 
improved drinking 
water supply (%) 

s_dri - (Burki, 2015; GUoM), 
2015; Htein et al., 2018; 
A. T. Oo et al., 2018a, 

2018c) 

Vulnerability assessment 
2018 based on Census 
2014  

A poor drinking water source is associated with 
negative health outcomes. During and following a 
flood, water from non-improved sources is at a 

higher risk of contamination, further heightening 
health hazards. 

Defined by MIMU (2018) as tap, 
tube well, protected well, and 
bottled water.  

Settlement 

and Housing 

Households with walls 

or floors made from 
leaf, bamboo or earth 
(%) 

s_wfl + (GUoM), 2015; Kawasaki 

et al., 2017, 2020; 
Otsuyama et al., 2019; 
Win et al., 2018; Zin et 

al., 2020) 

Census 2014 These houses are prone to damage or complete 

destruction during a flood, resulting in a diminished 
availability of quality shelter for affected populations. 

Proxy for: The population 

residing in poorly constructed 
housing. Calculated by 
averaging the percentage of 

houses with walls made from 
materials such as leaf, bamboo, 
or earth, and the percentage of 

houses with floors constructed 
from similar materials. 

 Population living in 

informal settlements 
(%) 

s_ins + (Boutry 2017) - These individuals are less likely to be prioritized by 

aid agencies and governmental bodies, leading to 
limited access to essential services. 

 

 Population living in 

unofficial wards (%) 

s_unw + (Boutry 2017) - These individuals are less likely to be considered by 

aid agencies and governmental authorities, resulting 
in restricted access to essential services. 

 

Remoteness Average travel time to 
the nearest city 
(minutes) 

s_ttc + (Phongsapan et al. 2019; 
Sritarapipat and 
Takeuchi 2018) 

The Malaria Atlas Project 
2015 

This determines the ease of accessing services 
typically available only in urban areas, such as 
healthcare, and also signifies access to markets, 

creditors, and other amenities.. 

 

Employment Daily wage workers 
(% of working 

population) 

s_daw + (GUoM), 2015; UN 
OCHA, 2015; Win et al., 

2018) 

General Administration 
Department Survey 

2016-17 

During disruptions, daily wage workers are typically 
the first to lose employment, leading to a decline in 

income. 

 

Coping capacity 

Category Indicator Code Direction References Data Source Justification Comments 

Information/ 
early warning 

Households with 
access to radio, 

television, internet, or 
mobile (max %) 

c_ati - (GUoM), 2015; Htein et 
al., 2018; A. T. Oo et al., 

2018a) 

Census 2014 People can receive warnings, access additional 
information about the flood, and locate services to 

aid in coping with the situation. 

Proxy for: Households with 
access to information (%) 

 Number of rain 

gauges per 10 000km 

c_rai - (Yuan et al. 2019) - Provides precise data for early warning systems.  

 Presence early 
warning system 

(yes/no) 

c_ear - (Htein et al. 2018; Oo et 
al. 2018c; Otsuyama et 

al. 2019; Reeder 2019) 

- Early warning facilitates prompt evacuation. Potential proxy: Households that 
received early warning in last 

event (%) 
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Social capital Population that has 
lived in the township 

for more than 1 year 
(%) 

c_ltr - (Jones and Ballon 2020; 
Kawasaki et al. 2020; 

Phongsapan et al. 2019) 

- Indicates familiarity with the area, knowledge of 
evacuation routes, and social connections that 

would be beneficial during and following a flood. 

 

Education Literacy rate (%) c_lit - (Jones and Ballon 2020; 

Kawasaki et al. 2020; 
Phongsapan et al. 2019) 

Census 2014 Literate individuals can read informational materials 

and warning pamphlets, as well as complete forms 
to access assistance. Literate people have more 
awareness regarding disaster risk than illiterate 

people. 

 

Institutional 

capacity 

Money spent on 

disaster risk reduction 
per person. 

c_res  (Htein et al. 2018; Oo et 

al. 2018c; Otsuyama et 
al. 2019; Reeder 2019; 
Zaw and Lim 2017) 

- Indicates the institutional capacity to support the 

population and the existing systems designed to aid 
communities in coping with challenges. 

Potential proxy: Number of 

disaster risk reduction projects 
per 10000 people 

Transportation Households owning a 
boat (%) 

c_boa - (Kawasaki et al. 2020; 
Otsuyama et al. 2019; 
UN OCHA 2015) 

Census 2014 Boats are valuable assets during floods for 
evacuating people and transporting essential goods. 

 

Health Number of doctors 
per 10000 people 

c_doc - (Boutry, 2017; GUoM), 
2015; Htein et al., 2018; 
A. T. Oo et al., 2018a, 

2018c; Phongsapan et 
al., 2019) 

General Administration 
Department Survey 
2016-17 

A population requires doctors to address illnesses 
and injuries following a flood. 

This aspect was not aggregated 
with c_bed since, even if there 
are enough hospital beds, the 

absence of doctors renders 
treatment unavailable. 

 Number of hospital 

beds per 10000 
people 

c_bed - (Boutry, 2017; GUoM), 

2015; Htein et al., 2018; 
A. T. Oo et al., 2018a, 
2018c; Phongsapan et 

al., 2019) 

General Administration 

Department Survey 
2016-17 

Populations require access to hospital beds to 

receive essential healthcare services. 

This aspect was not aggregated 

with c_doc since, without 
hospital beds, it becomes 
difficult for populations to access 

doctors and receive necessary 
treatment. 

Access to 

energy 

Households with 

access to alternative 
electricity sources (%) 

c_aes - (Oo et al. 2018a) Census 2014 After floods, there is a high likelihood of damage to 

electricity transmission wires. Alternative sources of 
power can assist communities in remaining safe by 
providing light, charging devices, and enabling 

communication with others and authorities. 

Solar energy and generators 

were identified as alternative 
energy sources. The total 
number of these sources per 

township was aggregated and 
divided by the number of 
households to calculate the 

average number of alternative 
energy sources per household. 

Accessibility Density of roads (road 
kernel density: km 
road/km2, search 

radius = 5km) 

c_dens - (Boutry, 2017; GUoM), 
2015; UN OCHA, 2015) 

Open Street Map 2020 The presence of roads enhances accessibility for 
emergency vehicles and serves as evacuation 
routes for populations. 

Trunk, primary, secondary, and 
tertiary roads were taken into 
account. Data was downloaded 

on 6/6/2020. 

Settlement 
and housing 

Houses with more 
than one floor (%) 

c_flo - (Zin et al. 2020) - Residents can relocate furniture to higher ground to 
mitigate flood damage, evacuate to safer areas, or 

reside on higher floors of buildings during flooding. 

 

Financial 
capital 

Households with 
diverse incomes (%) 

c_div - (GUoM), 2015; Kawasaki 
et al., 2020; A. T. Oo et 

al., 2018a) 

- if one source of income is disrupted due to flooding, 
households can rely on alternative sources of 

income to sustain themselves. 

 

 Households with 
savings (%) 

c_sav - (GUoM), 2015) - In the event of income disruption, individuals can 
depend on savings to cover expenses.  

 

 Households with 
insurance (%) 

c_ins - (GUoM, 2015; Kawasaki 
et al., 2020) 

- This provides financial security and facilitates the 
rebuilding process after a flood. 

 

Public 
infrastructure 

Average distance to 
nearest shelter place.  

c_dts + (Burki, 2015; GUoM), 
2015; Htein et al., 2018; 

- This factor determines the ease with which 
populations can evacuate and find safety during 
emergency situations such as floods. 

Potential proxy: Number of 
shelter places per 10000 people. 
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Kawasaki et al., 2017; 
Reeder, 2019) 

Includes schools, monasteries, 
and evacuation shelters. 

Food security Households that save 
food (%) 

c_sfo - (Oo et al. 2018c, 2018a) - Flooding disrupts agriculture, affecting food 
availability. Saving food ensures that families will 
have sustenance to consume after a flood. 

 

Datasets: 
UNEP Preview: http://preview.grid.unep.ch 
WorldPop: http://www.worldpop.org.uk 
Census 2014: http://themimu.info/census-data (spreadsheet: BaselineData_Census Dataset - Sr, District & Township_MIMU 16Jun2016 ENG.xlsx) 

General Administration Department Survey 2016-17:  
- Income: https://data.opendevelopmentmekong.net/dataset/general-administration-department-gad-2016-17--module-6-individual-income-section-prod2?type=dataset 
- Population: https://data.opendevelopmentmekong.net/dataset/general-administration-department-gad-2016-2017---module-4-population-population-section-prod2?type=dataset  

- Malaria/chronic disease: https://data.opendevelopmentmekong.net/dataset/general-administration-department-gad-2016-2017-module-7-health-most-disease-in-region-section?type=dataset 
- Doctors: https://data.opendevelopmentmekong.net/dataset/general-administration-department-gad-2016-2017-module-7-health-personal-health-care-section?type=dataset  
- Hospital beds: https://data.opendevelopmentmekong.net/dataset/general-administration-department-gad-2016-2017---module-7-health-hospital-section-prod2?type=dataset  

The Armed Conflict Location & Event Data project (ACLED): https://acleddata.com/data-export-tool/  
Vulnerability assessment 2018: http://themimu.info/vulnerability-in-myanmar (Spreadsheet: Datasets_Vulnerability Analysis in Myanmar_09Jul2018.xlsx) 
The Malaria Atlas Project: https://malariaatlas.org/research-project/accessibility_to_cities/  

Open Street Map: https://export.hotosm.org/en/v3/  

http://preview.grid.unep.ch/
http://www.worldpop.org.uk/
http://themimu.info/census-data
https://data.opendevelopmentmekong.net/dataset/general-administration-department-gad-2016-17--module-6-individual-income-section-prod2?type=dataset
https://data.opendevelopmentmekong.net/dataset/general-administration-department-gad-2016-2017---module-4-population-population-section-prod2?type=dataset
https://data.opendevelopmentmekong.net/dataset/general-administration-department-gad-2016-2017-module-7-health-most-disease-in-region-section?type=dataset
https://data.opendevelopmentmekong.net/dataset/general-administration-department-gad-2016-2017-module-7-health-personal-health-care-section?type=dataset
https://data.opendevelopmentmekong.net/dataset/general-administration-department-gad-2016-2017---module-7-health-hospital-section-prod2?type=dataset
https://acleddata.com/data-export-tool/
http://themimu.info/vulnerability-in-myanmar
https://malariaatlas.org/research-project/accessibility_to_cities/
https://export.hotosm.org/en/v3/
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Supplementary material II 
Data analysis 

 
Supplementary Material II provides additional information on outlier analysis and treatment, and multicollinearity 
assessment.  
 

- Outliers and winzorisation: Box plots based on the interquartile range and skewness and kurtosis were 
used to identify outliers (where skewness >1 and kurtosis >3.5 indicate potential outliers (Hagenlocher et al. 
2018)). There was a high number of data points outside the interquartile range, and indicators with high 
skewness and kurtosis. However, only nine points in total were determined to be outliers and errors based on 
the local expert knowledge of one of the authors. These were treated with winzorisation which is a common 
method to manage outliers (Damioli 2017). As the data was not treated with the intention to create normally 
distributed data (as this would alter the characterization of vulnerability and risk beyond what is the true 
situation in Myanmar), the median as a measure of central tendency for each indicator. Table B outliers which 
data points were treated and which value they were given.   

 
Table B. Treated indicators and their values.  

Indicator Treated value From To Value 

s_pov 34303567 Seikkan Yebyu 12357626 

s_pov 26322559 Kyeemyindaing Yebyu 12357626 

s_pov 23616513 Kyauktada Yebyu 12357626 

s_pov 18114882 Magway Yebyu 12357626 

s_vec 509.32 Paletwa Tanai 231.98 

s_chr 2.281641 Palaw Aunglan 1.558724 

s_fhh 55.05 Thayetchaung Amarapura 40.97 

s_fhh 48.41 Patheingyi Amarapura 40.97 

c_doc 248.09 Oke Ta Ra Thi Ri Cocokyun 8.97 

 
- Multicollinearity assessment: A multi-collinearity assessment was conducted to determine if there were any 

redundant indicators. Using Kendall’s Tau suitable for non-normal data (Puth et al. 2015), and two tailed 
significance, no issue of collinearity was detected based on a threshold of ±0.9. Table C outlines the results 
from the analysis.   
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TABLE C: Results of multicollinearity assessment using Kendall’s Tau using SPSS (IBM SPSS Statistics) 

 
 

 

e_soc s_dep s_pov s_dis s_vec s_chr s_fhh s_con s_san s_dri s_wfl s_ttc s_daw c_ati c_lit c_dens c_boa c_doc c_bed c_aes

Correlation Coefficient --

Sig. (2-tailed)

Correlation Coefficient -0.051 --

Sig. (2-tailed) 0.168

Correlation Coefficient 0.026 -.368
** --

Sig. (2-tailed) 0.480 0.000

Correlation Coefficient 0.036 .271
**

-.120
** --

Sig. (2-tailed) 0.327 0.000 0.001

Correlation Coefficient 0.003 .308
**

-.268
**

.123
** --

Sig. (2-tailed) 0.932 0.000 0.000 0.001

Correlation Coefficient .212
** 0.034 0.024 .094

*
.091

* --

Sig. (2-tailed) 0.000 0.351 0.514 0.011 0.015

Correlation Coefficient -0.046 -.096
**

.175
**

-.085
*

-.100
** 0.069 --

Sig. (2-tailed) 0.214 0.009 0.000 0.021 0.008 0.063

Correlation Coefficient -0.026 .190
**

-.215
** 0.013 .182

** -0.017 0.040 --

Sig. (2-tailed) 0.546 0.000 0.000 0.761 0.000 0.687 0.347

Correlation Coefficient 0.016 -.412
**

.239
**

-.168
**

-.259
** 0.011 .233

**
-.196

** --

Sig. (2-tailed) 0.662 0.000 0.000 0.000 0.000 0.757 0.000 0.000

Correlation Coefficient 0.044 -.344
**

.250
**

-.233
**

-.177
** 0.024 .246

**
-.187

**
.412

** --

Sig. (2-tailed) 0.234 0.000 0.000 0.000 0.000 0.517 0.000 0.000 0.000

Correlation Coefficient .144
**

.106
**

-.110
**

.083
* 0.055 0.053 -.159

** 0.015 -.309
**

-.152
** --

Sig. (2-tailed) 0.000 0.004 0.003 0.025 0.147 0.151 0.000 0.728 0.000 0.000

Correlation Coefficient -0.046 .450
**

-.374
**

.230
**

.450
** -0.066 -.245

**
.202

**
-.343

**
-.312

**
.089

* --

Sig. (2-tailed) 0.218 0.000 0.000 0.000 0.000 0.076 0.000 0.000 0.000 0.000 0.016

Correlation Coefficient .094
* -0.042 .110

** 0.012 -.140
**

.084
* 0.006 -0.044 0.026 0.004 0.028 -.144

** --

Sig. (2-tailed) 0.011 0.259 0.003 0.742 0.000 0.022 0.869 0.306 0.486 0.924 0.453 0.000

Correlation Coefficient -.108
**

-.439
**

.242
**

-.269
**

-.208
** -0.053 .259

**
-.104

*
.406

**
.301

**
-.289

**
-.339

** 0.007 --

Sig. (2-tailed) 0.004 0.000 0.000 0.000 0.000 0.153 0.000 0.015 0.000 0.000 0.000 0.000 0.842

Correlation Coefficient .140
**

-.482
**

.390
**

-.193
**

-.282
** 0.052 .191

**
-.303

**
.428

**
.387

**
-.165

**
-.410

**
.079

*
.290

** --

Sig. (2-tailed) 0.000 0.000 0.000 0.000 0.000 0.161 0.000 0.000 0.000 0.000 0.000 0.000 0.031 0.000

Correlation Coefficient .091
*

-.423
**

.339
**

-.130
**

-.445
**

.078
*

.185
**

-.150
**

.315
**

.365
** -0.056 -.581

**
.113

**
.309

**
.366

** --

Sig. (2-tailed) 0.014 0.000 0.000 0.000 0.000 0.034 0.000 0.000 0.000 0.000 0.129 0.000 0.002 0.000 0.000

Correlation Coefficient .366
**

.094
* 0.019 .183

** 0.045 .196
**

-.080
* -0.072 -.118

**
-.158

** 0.067 0.040 .099
**

-.197
**

.108
**

-.077
* --

Sig. (2-tailed) 0.000 0.011 0.603 0.000 0.231 0.000 0.030 0.093 0.001 0.000 0.070 0.284 0.007 0.000 0.004 0.037

Correlation Coefficient -.108
** -0.036 0.020 -0.016 .105

** -0.060 0.007 -0.050 .132
** 0.043 -0.050 .085

* -0.030 0.030 0.029 -.130
** -0.035 --

Sig. (2-tailed) 0.004 0.333 0.583 0.672 0.005 0.106 0.846 0.243 0.000 0.241 0.180 0.023 0.412 0.411 0.430 0.000 0.344

Correlation Coefficient -.149
** -0.035 0.002 -0.044 .117

**
-.141

** 0.015 0.009 .118
** 0.053 -.193

**
.142

**
-.119

**
.119

** -0.013 -.099
**

-.134
**

.386
** --

Sig. (2-tailed) 0.000 0.341 0.949 0.238 0.002 0.000 0.688 0.842 0.001 0.151 0.000 0.000 0.001 0.001 0.718 0.007 0.000 0.000

Correlation Coefficient -.093
*

.254
**

-.148
** 0.020 .330

** 0.041 -0.038 0.039 -.189
**

-.147
**

.121
**

.280
** -0.054 -.104

**
-.223

**
-.316

** 0.020 .092
* -0.023 --

Sig. (2-tailed) 0.012 0.000 0.000 0.587 0.000 0.264 0.307 0.357 0.000 0.000 0.001 0.000 0.144 0.005 0.000 0.000 0.584 0.013 0.526

s_daw

Correlations

Kendall's 

tau_b

e_soc

s_dep

s_pov

s_dis

s_vec

s_chr

s_fhh

s_con

s_san

s_dri

s_wfl

s_ttc

c_aes

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

c_ati

c_lit

c_dens

c_boa

c_doc

c_bed
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Supplementary Material III 
Maps 

Supplementary Material III contains duplicates of maps from the text of (M1) risk from method one, (M2) risk from 
method two, and (M3) hazard, exposure, vulnerability, and risk (method one). 

 

(M1) 
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(M2) 
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