Building capacities for evolving geospatial needs in Myanmar

Evolution of Geospatial Science and Technology Implications for education

Prof Dr Victor Jetten

ITC – Geoinformation Science and Earth Observation University of Twente

MIMU

CONTENT

- ITC who are we?
- A brief history of GIS systems
- Developments in Spatial Sciences
- From cartography to multidisciplinarity
- Drivers of developments
- There is good news and bad news
- Towards criteria for a specialists in spatial analysis

THE UNIVERSITY OF TWENTE HIGH TECH, HUMAN TOUCH

"we want to train students to solve problems that we are **not** yet aware of, with methods that do **not** yet exist"

ITC - FACULTY OF GEOINFORMATION SCIENCE AND EARTH OBSERVATION

Every year ~700 students from 55+ nationalities enroll in different types of education

Nr 6 in world ranking on earth observation education

ITC's Mission Capacity development through education and research

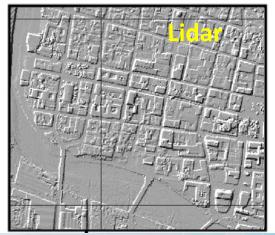
MIMU symposium Myanma

GIS - A SHORT HISTORY OF SYSTEMS

- 60-ties: First operational system in Canada CGIS (not public domain)
- 70-ties: Public domain systems: GRASS, MOSS, CAD drawing platforms, military sponsored systems
- 80-ties: Commercial: ARC/INFO by Environmental Systems Research Institute (ESRI), MapInfo Corporation and ERDAS (Earth Resource Data Analysis System)
- 90-ties: Mainstream, ArcGIS is gradually replacing locally developed systems in public services and cities (in the Netherlands)
- 2000 and beyond: science community driven developments:
 - Open-source Quantum GIS (QGIS), includes GRASS and SAGA
 - specialized freeware: GDAL for format conversion, spatial modelling software (e.g. PCRaster), Geostat software, OBIA software, Radar and Lidar apps
 - Dedicated tools based on GIS: various Spatial Decision Support Systems or e.g. Early Warning Flood Systems, webGIS
- 2004 and beyond: Google Earth (2004), Google Maps, Open Street Map (2004)
- NOTE: parallel development in Medical Sciences for image analysis: spectral analysis and pattern recognition software

UNIVERSITY OF TWENTE

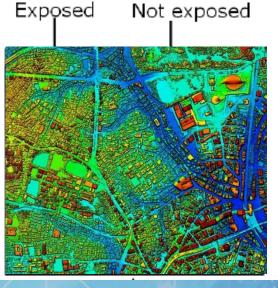
wikipedia ...


THREE DEVELOPMENTS IN SPATIAL SCIENCES

- GIS is about storage/retrieval and spatial analysis of vector and raster data, increasingly about communication
- Remote Sensing/Earth Observation: provides much of the data and information, airborne and space borne platforms
 - development driven by space industry and societal needs
- Spatial statistics and analytics:
 - Interpolation: spatial data from point observations
 - Complexity of data: multivariate spatial statistics evolving in to machine learning

GIS EXAMPLE: EXPOSURE TO FLOODING

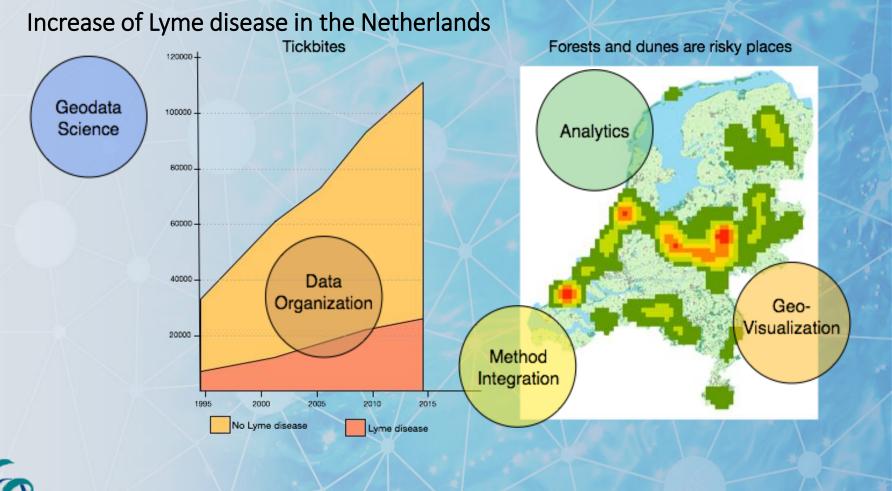
Elements at risk: Building footprint



- High res imagery
- LIDAR
- UAV
- open street map

Hazard: Hazard footprint

- GIS/DEM operations
- Radar images
- Community based mapping
- Spatial Modelling

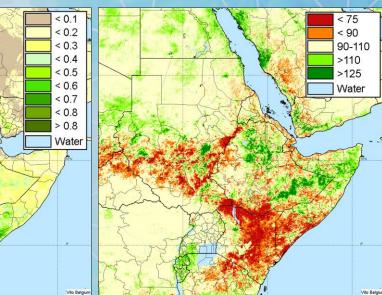


Vulnerability

- Structure info (damage curves)
- Community based info
- Spatial multicriteria analysis

UNIVERSITY OF TWENTE.

GIS: COMPLEX ANALYSIS AND VISUALISATION

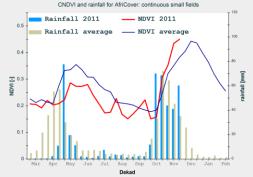


Source: Kraak et al, 2017

EARTH OBSERVATION: NDVI & FOOD SECURITY

vs. mean('98-2010)

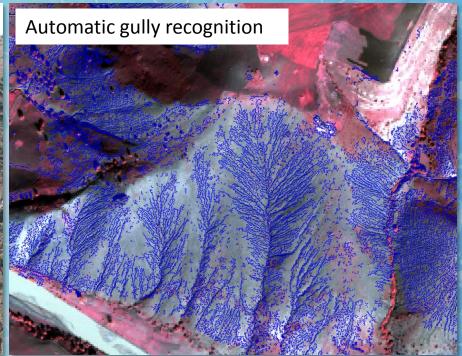
NDVI June 2011


Ground truth:

Results are better if checked with ground and meteo information by Agricultural experts

UNIVERSITY OF TWENTE.

Bay (Somalia)

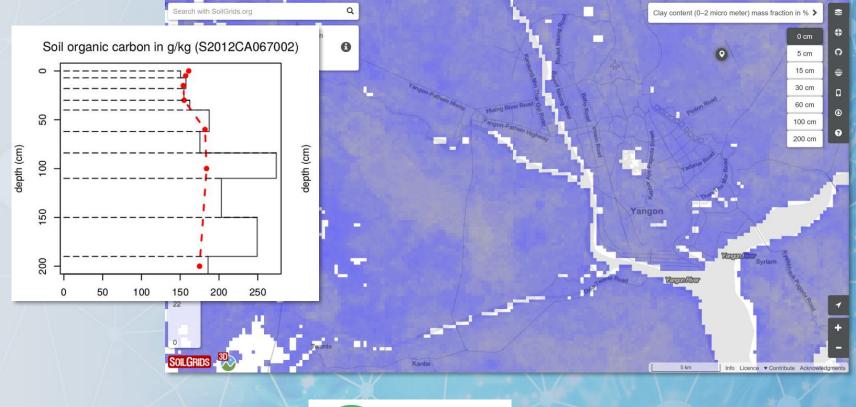

MIMU symposium Myanmar 24/25 May 2018

Source: Vrieling et al, 2016

OBJECT ORIENTED ANALYSIS OF VERY HIGH RES IMG

Digitization by hand is not an option

Not 100% accurate: you need land degradation knowledge to correct and interpret

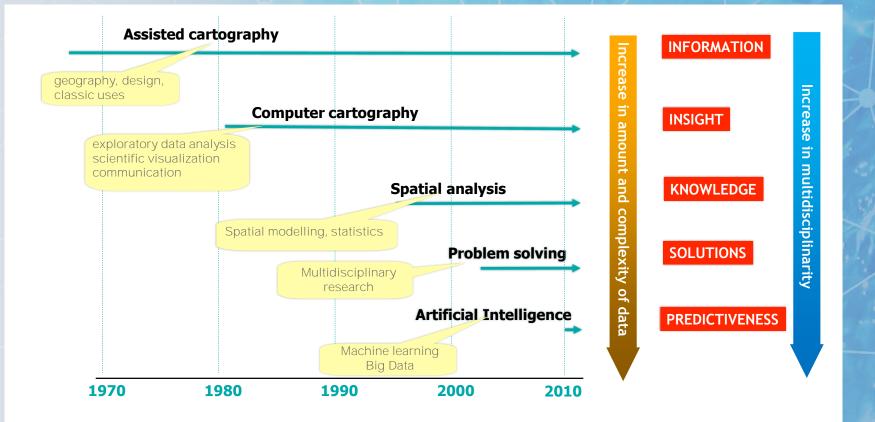


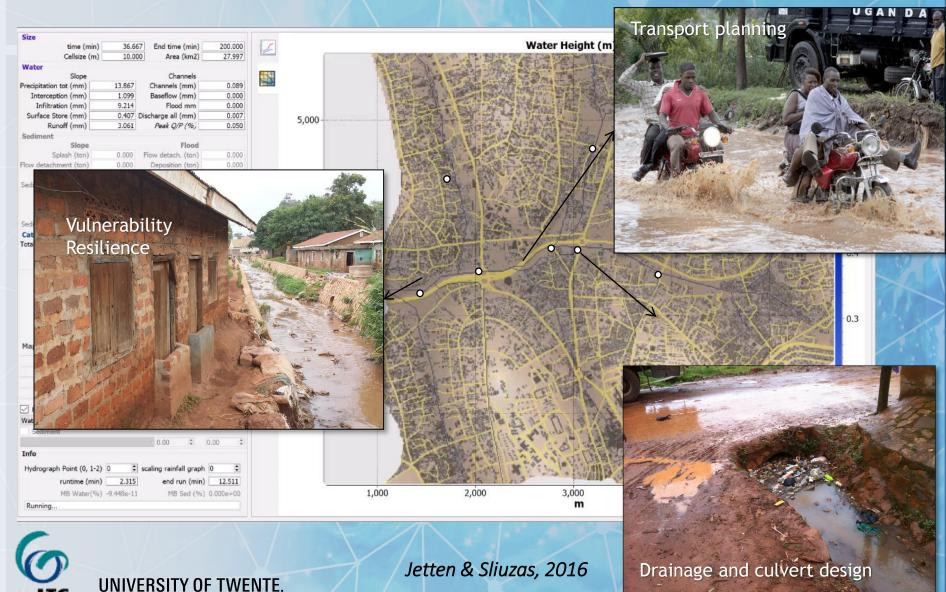
MIMU symposium Myanmar 24/25 May 2018

Shruthi et al., 2012

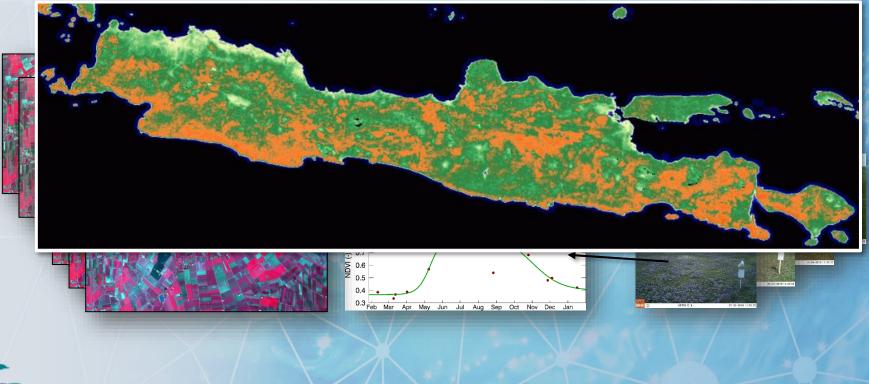
SPATIAL ANALYTICS DEVELOPMENTS

SOILGRIDS.ORG: global soil information at 250m resolution, 7 depths, based on spatial interpolation of observations and machine learning




Hengl et al., 2017

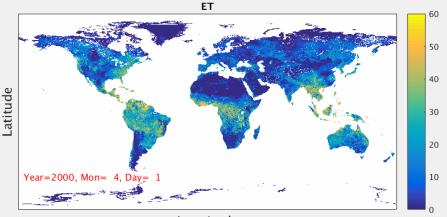
DEVELOPMENT OF SPATIAL SCIENCES


GIS USED AS INPUT FOR COMPLEX SPATIAL FLOOD MODELLING

MIMU symposium Myanmar 24/25 May 201

VEGETATION DYNAMICS: PHENOLOGY

Understand vegetation seasonality, crop dynamics Using new data, high resolution sources such as Sentinel-2 and MODIS-AVHRR



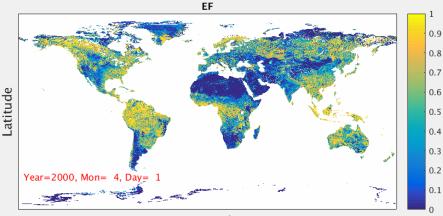
MIMU symposium Myanmar 24/25 May 2018

Anton Vrieling Cees de Bie

HIGH RESOLUTION HYDROLOGICAL FLUXES

Longitude

2000-present: 5x5km daily Evaporation and Heat Fluxes


For ecosystem services, agriculture and drought

Global databases instead of local/national databases

http://en.tpedatabase.cn/

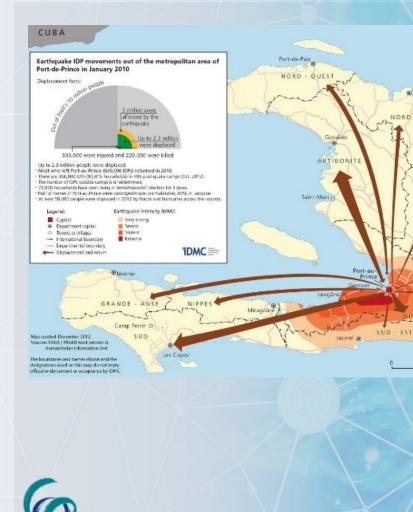
24/25 May 2018

Su, 2002,; Chen et al., 2013, 2014

Longitude

URBAN OBSERVATORY FOR PLANNING AND GOVERNANCE

- VHR imagery (very high resolution) allows for a more detailed extraction of urban structure types and degree of integration/fragmentation
- So not observation of details, but interpretation of meaningful social units: slums, business centres etc.
- City scale to community scale



DRIVERS OF RECENT DEVELOPMENTS

- Complete location awareness and use: we want to know everything immediately and timely and actionable: Google analytics, Facebook, but also Mobile phone location: disasters and agricultural services
- UN, WB, ADB, Insurance companies: financing data acquisition (LiDAR coverage of countries)
- Citizen science: use of big fuzzy data as a source information
- UAVs (drones): very high res spatial data, possibly replacing airborne platforms
- Free sources: Open street map and Humanitarian OSM.
- Free sources: global meteo/hydro/vegetation/soil databases, to be used where national databases do not exist
- Changing roles common services: meteorology to early warning, forestry for biodiversity
- 3D: Virtual Reality and Augmented Reality techniques

ANALYZING MOBILE PHONE DATA TO ESTIMATE DISPLACEMENT AFTER NATURAL DISASTER

- Trace victims during an event
- Also through social media
- Warn people during an event

FLOWMINDER.ORG Digicel

Hurricane Matthew: Estimated population movement, 24 October 2016

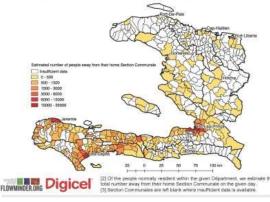
NORD - EST

CENTRE

Fonds

40 k

The map shows the estimated distribution of people for whom their home Section Communale in the pre-hurricane period was in either Grande Anse Sud or Nippes départment, and as of 24 October had moved to another Section Communale.


- Estimates are based on movements of de-identified SIM cards which made or received at least one call pre-hurricane and on 24 October 2016.
- · The SIM card movements combined with available population data derived from estimates for the year 2015
- · The table lists the locations with the largest number of arrivals

Location	Population pre-hurricane	Persons arrived	Ratio (%)
Port-au-Prince (Metropolitan area)	2670000	85700	5
Bourdet (Les Cayes)	71600	30100	42
Fond Rouge Dalyer (Jeremie)	27100	6950	26
Fond Rouge De Torbec (Jeremie)	26800	6790	25

```
inus benatsson@flowminder.om
                                    +41 78 964 88 28
                                     +44 7815 944 012
thris brooks@flowminder.org
```

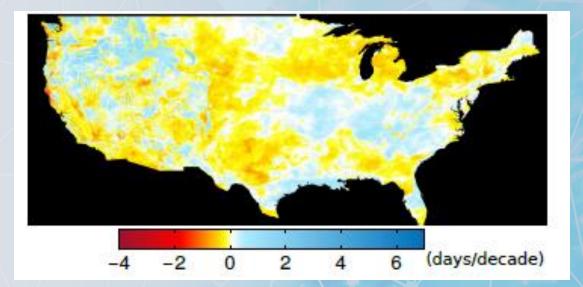
Estimated population away from their home Section Communale ^{[2]:}				
HOME DEPARTMENT:	GRANDE ANSE	SUD	NIPPES	
POPULATION AWAY FROM HOME:	77500	132000	51000	
% AWAY FROM HOME:	18%	17%	15%	

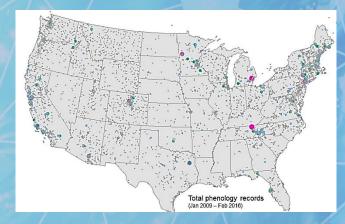
24 October 2016, location of people away from their home Section Communale (out of those living pre-hurricane in Grande Anse, Sud and Nippes only)[0]

Flowminder org is a non-profit proarization registered in Stockholm. Sweden, Digicel is a mobile operator in Hai

UNIVERSITY OF TWENTE.

MIMU symposium Myanmar 24/25 May 2018


Source: WFP/Lucia Casarin


Produced 26 Oct 2016 v f.0.

EXAMPLE OF CITIZEN SCIENCE

- Climate change analysis in the US based on timing of reports on spring flowering of common Lilac
- Possible shift in start of spring from -40 to +60 days

US: 8 million citizen observers

MIMU symposium Myanmar 24/25 May 2018

Source: Zurita Mila et al, 2016

EXAMPLE OF CITIZEN SCIENCE

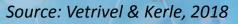
"Mapathons"

Volunteers (students, school children)

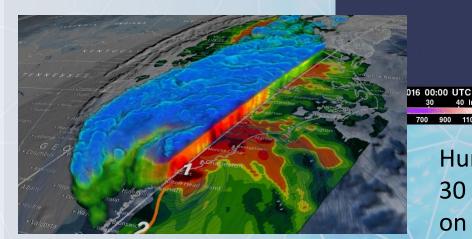
map areas for the Red Cross

MIMU symposium Myanmar 24/25 May 2018

source: Lemmens, 2017


UAVs IN BUILDING DAMAGE ASSESSMENT

- 3D point clouds ("big data")
- Combine into object, filtering, shadow removal
- Interpretation to building damage



CHANGING ROLE OF SERVICES

Met office services are more application oriented: extremes, early warning

Hurricane Matthew: 30 min 0.1° rainfall intensity data, based on physical cloud models and radar

Global Precipitation Measurement

AUGMENTED REALITY FOR PUBLIC SERVICES

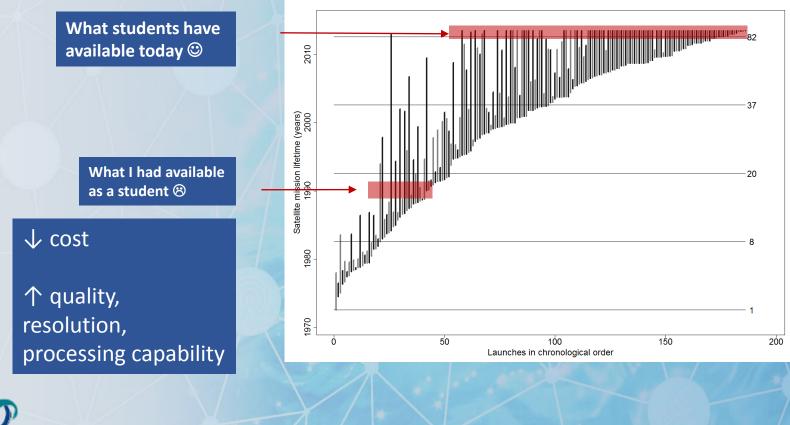
3D underground information of pipelines, cables etc.

MIMU symposium Myanmar 24/25 May 2018

De Mulder et al., 2012

6000

SAD



MIMU symposium Myanmar 24/25 May 2018

NEWS

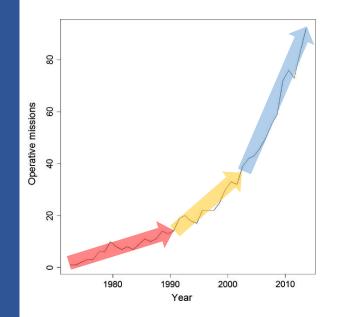
A VERY GOOD TIME TO BE IN THE GI-SCIENCE AND EARTH OBSERVATION BUSINESS!

The lifespan of all near-polar orbiting, land imaging, civilian satellites shown in chronological order over 40 years (1972-2013)

UNIVERSITY OF TWENTE.

MIMU symposium Myanmar 24/25 May 2018

source: Belward & Skoeien, 2015


A VERY GOOD TIME TO BE IN THE GI-SCIENCE AND EARTH OBSERVATION BUSINESS!

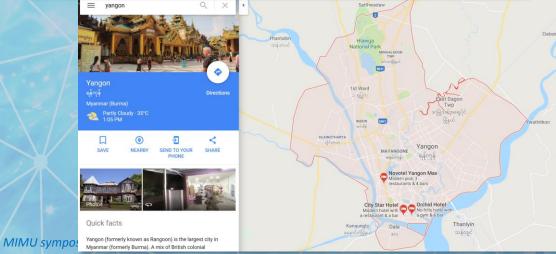
earth observation capability is increasing more rapidly than ever ...

... and it is only a fraction of the information available for mapping and monitoring

We also have:

- Cubesats and micro satellites
- Airbourne sensors (drones)
- Land based measurement / sensor networks
- The internet of things / sensor webs
- Citizen science

UNIVERSITY OF TWENTE.


MIMU symposium Myanmar 24/25 May 2018

source: Belward & Skoeien, 2015

GIS IS GREAT FOR COMMUNICATION

- Intuitive use everyone is used to seeing digital maps
- Stakeholder involvement collaborative planning and decision making processes
- Models and tools (ABM, 3D visualisation, map-table, Web-GIS etc)
 - to investigate interactions between factors
 - facilitate stakeholder communication
 - On-the-fly planning

ALSO SOME BAD NEWS - TECHNICAL

Local/national ground information and legacy information is often scattered or a digital mess:

- Basic data: e.g. geology and soil and land use maps are missing in many countries, or very large scaled and generalized
- Timeseries, e.g. of river discharge is missing, erratic
- Sensus data is outdated or not present
- Informal settlements have no data at all
- Land admin and cadaster data missing
- Global databases replace these but they are perceived to be 100% true ... !

AND SOME BAD NEWS IN TERMS OF POLICY

- The metadata, provenance and quality indicators are missing
- Measured data are often project related so scattered in place and time
- Data in a country is not available in one location, but fragmented
- International consultants often create their own database, leave behind a harddisk or a temporary webservice
- "Knowledge is power" reluctance to share ownership
- Unclear responsibilities

CONTRADICTION

- The traditional role of generator of spatial data is disappearing: data is produced globally by a wide range of sources in enormous quantities ... but with not clear if it can be used on a detailed scale
- ... but a lot of basic data is still not digitized and often scattered, incomplete, or its use is restricted. Traditional skills are needed!

Global data abundance versus local data scarcity !

WHAT DO YOU WANT THE GIS EXPERT TO BE?

MIMU symposium Myanmar 24/25 May 2018

THE GEOMATICS EXPERT

Deep knowledge of the territory (geodesy, cartography)

- ✓ Securing all public and private lands (land registry, registration and publicity of land rights) Legal expert?
- Protection and sustainable development of resources (water, soil, forests, mines)
 Natural resources expert?
- ✓ Response planning and regional planning
- Monitoring of natural phenomena
- ✓ Infrastructure management
- Establishment of municipal property tax

Can you combine this in one study?

Source: Eric Loubier, Director Earth Sciences Sector MIMU symposium Myanmar 24/25 May Matural Resources Canada

Planning expert?

Disaster expert?

Financial expert?

Infrastructure expert?

...OR MORE MULTI-DISCIPLINARY?

Traditional role

✓ Can design and maintain spatial databases
 ✓ Can analyze and quantify data quality and uncertainty
 ✓ Can derive information from many different new sources
 ✓ Can do advanced spatial statistics/analytics
 ✓ Can find the right tools to do spatial analysis
 ✓ Can use GIS to communicate effectively

Changing role

Can engage in scientific problem solving, academic thinking
 Can find the right data sources to solve problems
 Can engage in multidisciplinary research, project team skills

JNIVERSITY OF TWENTE.

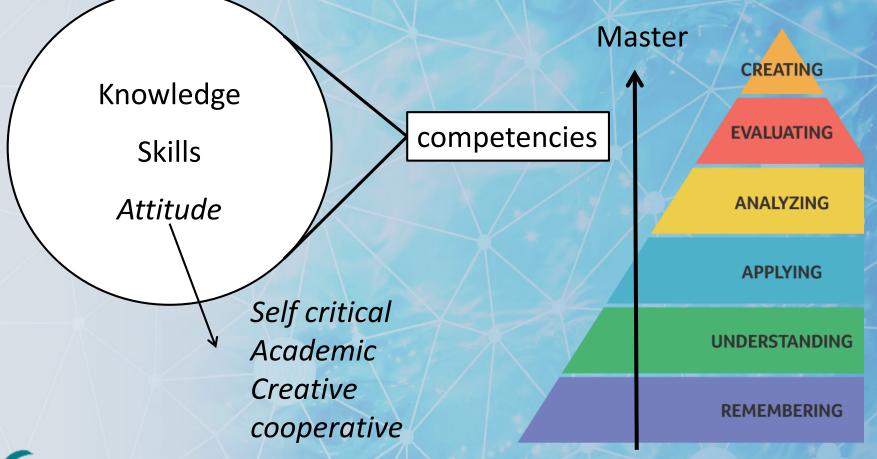
THE GIS EXPERT: AN EVOLVING ROLE

Geoinformatics expert

Spatial Data expert Data quality expert Geo-analytics expert Communications expert "The spatial analysis is the answer"

Analysis

Application expert


Process knowledge Generates primary data Advanced domain modelling Direct contact stakeholders "The spatial analysis supports the answer"

Analysis is done by both: Geoinformatics expert is more data oriented (lack of field experience) Application expert is more process oriented (lack of data experience)

MIMU symposium Myanmar 24/25 May 2018

UNIVERSITIES: TOWARDS COMPETENCIES

UNIVERSITY OF TWENTE.

CONCLUSIONS

- Big advances in technology, from simple spatial analysis to complex multidisciplinary analysis
- Spatial sciences has become mainstream, known to a wide public, used by many services
- Exponential increase in data sources and types, many of them free
- The role of the GIS expert changes, he/she can be the spatial data analysis expert ...
- ... while for complex processes cooperation with domain experts is needed
- Demands to Higher Education change as well

ကျေးဇူးတင်ပါတယ်

Thank you

MIMU symposium Myanmar 24/25 May 2018