

DEVELOPMENT OF FLOOD INUNDATION MAP FOR BAGO RIVER BASIN USING DIFFERENT MODELS

Presented by

Dr.Win Win Zin Professor YTU

26th Sept 2018

INTRODUCTION

- Flood inundation modeling involves hydrologic modeling to estimate peak flows from storm events, hydraulic modeling to estimate water surface elevations, and terrain analysis to estimate the inundation area
- One of the methods to prevent and reduce losses is to provide reliable information to the public about flood risk through a flood inundation map

Study Area

3

COUPLING HYDROLOGICAL AND HYDRAULIC MODELS

- Flow calculated by the hydrological model is used as input at the upstream boundary condition of the hydraulic model. The output of the hydrologic model, the flood hydrographs, were used as input in the hydraulic model for calibrating and validating with the known water levels.
- Floodinundation mapping is a sequential process, starting with a hydrological analysis, followed by a hydraulic analysis and geospatial processing with spatial analysis tools such as geographic information system (GIS) and remote sensing.

MODEL USED

No	Sourcoo		Domorko
<u>1</u>	Department of Meteorology and Hydrology (DMH)	Daily precipitation data	1987-2017
· ·	Department of Meteorology and Hydrology (Divini)	Daily proophation data	1007 2017
		Daily water level data,	
2	Irrigation and Water Litilization Management Department	Daily discharge data	2011-2017
2		Daily precipitation data,	2011-2017
3	Department of Hydropower Implementation (DHPI)	Daily precipitation data	2011-2017
Ŭ	Department of Hydropower implementation (Drift)	Daily prooptation data,	2011 2017
4	SATREPS project	128 Cross Sections (Bago River)	2013~2015
		20 Cross Sections (Bago-Sittaung Canal)	2018 2010
5	Soomanta sharma Bhagabati, 2018	Digital Elevation Model (DEM)	10 m resolution
	Seemanta Sharma Dhayabati ,2010		TO III TESOIULIOII
6	(http://www.hydrosheds.org/page/availability)	HydroSHEDS DEM	3-sec resolution
7	(http://www.esa.int/due/ionia/globcover)	Global Land Cover map	2009
8	(https://rlcms-servir.adpc.net/en/landcover/#)	Regional Land Cover map by SEVIR	2016
		MEKONG	
9	DSMW (www.fao.org)	Soil maps	2003
10	Sentinel ESA Copernicus	Sentinel 1 SAR image	2015-2017
	(https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar)		
			0045
11		Radarsat 2 flood water extent analysis map	2015
	(https://unosatgis.cern.ch/arcgis/rest/services/FP02/FP02_FL_2	for 9 August 2015	
	0150703_MMR_20150809_Flood_Radarsat2/MapServer?f=lyr)		

HEC-HMS MODEL COMPONENTS

Precipitation

- User-specified hyetograph
- User Gage Weighting
- Inverse-Distance Gage
- Frequency storm
- SCS hypothetical storm
- Standard project storm

Surface Runoff (Transform)

- Clark's UH
- Snyder UH
- SCS UH
- ModClark
- Kinematic wave
- □ User-specified UH
- User –specified Sgraph

Infiltration

- SCS curve number
- Initial and Constant
- Deficit and Constant
- Gridded SCS curve number
- Green and Ampt
- Soil Moisture Accounting
- Gridded Soil Moisture Acc

Channel flow routing

- □ Kinematic wave
- Lag
- Modified Puls
- Muskingum
- □ Muskingum-Cunge
- Standard Section
- Muskingum-Cunge-8-point Section
- Confluence
- Bifurcation

HEC-HMS Calibration Results

9

HEC-HMS Validation Results

HEC-RAS MODEL

- Flood routing along the river network was simulated with HEC-RAS
- Conducted 50 km reach starting from Zaungtu weir to Tarwa outlet

Comparison of 2006 July flood inundation map with ALSOS PALSAR image 12

Flood inundation extent predicted from 2015, August Sentinel-1 SAR image.

Simulated flooded area for 2015 August flood using HEC-RAS.

(Source:Khaing,2012)

ALOS DSM developed by UTokyo

0 12.5 25 50 Profile Graph Title Profile Graph Title

Profile Graph Title

(m)

Digitization of High Points

Comparison of cross-section and the DEM & DSM

8

Comparisons of vertical profile for 4 DEMs at top and lower basin.

(Source: Seemanta, 2018)

WEB-DHM MODEL COUPLED WITH RRI MODEL

WATER AND ENERGY BUDGET BASED DISTRIBUTED HYDROLOGICAL MODEL (WEB-DHM)

- Spatially-distributed biosphere hydrological model included water and energy balance as well as CO2 flux
- More reliable estimation of Evapotranspiration
- Coupled with GCM and forecasting data for flood and drought
- Applicability with **large** river basins
- Satellite data can be used for land use, soil, vegetation, etc...

Parameters used for setting up the WEB-DHM

Parameter	Data source	Global/I ocal dataset
Elevation	HydroSHEDS (http://hydrosheds.cr.usgs.gov/index. php)	Global
Land Use	USGS Land Use (SiB2)	Global
Soil	FAO soil	Global
LAI/FPAR	MODIS	Global
Meteorological parameters (T, P, U, V, LW, SW)* *Temperature, Pressure, Wind, Long Wave and Short wave radiation	JRA-55 (Japan Reanalysis data)	Global
Rainfall	In-situ rainfall	Local

PRE-PROCESSING IN WEB-DHM MODEL

CALIBRATION 2012 ~ 2014

VALIDATION 2015 ~ 2016

RAINFALL-RUNOFF-INUNDATION MODEL

- Two-dimensional model capable of simulating rainfall-runoff and flood inundation simultaneously
- The model deals with slopes and river channels separately
- At a grid cell in which a river channel is located, the model assumes that both slope and river are positioned within the same grid cell
- Characterized as "Storage cell-based inundation model".

Sayama, T. et al.: Rainfall-Runoff-Inundation Analysis of Pakistan Flood 2010 at the Kabul River Basin, *Hydrological Sciences Journal*, 57(2), pp. 298-312, 2012.

FLOOD INUNDATION MAPS

Simulated flooded area for 2014 August flood using RRI Model

Simulated flooded area for 2015 August flood using RRI Model

	Simulated by the RRI model	Observed by the Radarsat 2 image	Over- lapped	Over and Under estimated by the model
Flooded Areas (Ha)	130	75	55
Percentage (%)	e 97.4	100	58	42

Comparison of 2015 flood inundation map with Radarsat 2 image

SOBEK I D/2D MODELLING

- Developed by Deltares
- Hydrodynamics, Rainfall runoff and Real time control
- integrated software package for river, urban or rural management

Module / feature	<u>SOBEK-Rural</u>	<u>SOBEK-Urban</u>	SOBEK-River
Hydrodynamics			
1DFLOW	\checkmark	1	1
Overland Flow module (2D)	\checkmark	✓	
Hydrology	hi s		
RR	\checkmark	✓	
Morphology			
1DMOR (incl Sediment Transport)			~
Water Quality			
1DWAG	\checkmark		~
2DWAG			
Emission module			
Real Time Control			
RTC simulation module	\checkmark	1	

SOBEK Calibration Results

2012 August Flood Event

2015 August Flood Event

SOBEK VALIDATION RESULTS

2016 July Flood Event

2017 July Flood Event

Comparison of Flood Inundation Area (2015 August Flood)

erono erono

Flood Inundation Map for 2015 August Flood Event Using SOBEK Model

Flood Inundation Map for 2015 August Flood Event Developed from UNOSAT Image

SUMMARY

- WEB-DHM Model performs very well in model simulation. But current version is not user friendly yet.
- It was seen that HEC-HMS model performs well in model simulation. There was a close relationship between observed and simulated flow. And it is user friendly model.
- HEC-RAS model was found to fit satisfactorily.
- RRI model is suitable for data scarcity region. RRI-GUI use course resolution DEM and so resulted river pattern can not show with fine cells. User can easily apply RRI-GUI. In RRI-CUI, user can add high resolution DEM and so it can give accurate result than RRI-GUI. But RRI-CUI running time is so long, difficult for data preparation and it is not applicable in real time flood forecasting.
- It was found that SOBEK model is user friendly. Model results are satisfied. But this model is commercial software.

CONCLUSION

- Uncertainties in flood inundation mapping arise from many sources such as model mathematical background and configuration, model assumption, boundary condition, model parameters, input data, design discharge, topography, grid cell size, flow condition, water surface elevation, the gradients of the channel and floodplain, and Manning's roughness coefficients.
- Topographic datasets play a significant role in hydraulic modeling and the accurate prediction of flood inundation areas.
- The channel roughness also has a significant impact on hydraulic simulations.
- Accurate and reliable models are needed for developing flood inundation map.

SATREPS WATER RELATED DISATER GROUP MEMBERS:

YTU

- Dr.Win Win Zin
- Dr.Zin Mar Lar Tin San
- □ Ma Thet Hnin Aye
- □ Ma Shelly Win
- Ma Kyu Kyu Thin
- □ Mg San Win Maung
- □ Mg Chit Bo Bo Win

University of Tokyo

- Professor Koike
- Professor Akiyuki Kawasaki
- Dr.Ralf Allen Acierto

.

Dr. Seemanta Sharma Bhagabati

REFERENCES

- Shelly Win (2014). Development of Flood Inundation Map for Bago River. Master Dissertation, YTU.
- Win Win Zin, Akiyuki Kawasaki and Shelly Win (2015). River flood inundation mapping in the Bago River Basin, Myanmar. Hydrological Research Letters 9(4), 97– 102
- Thet Hnin Aye (2016). Flood Hazard Mapping of Bago River Basin. Ph.D. Dissertation.YTU
- Win Win Zin, Akiyuki Kawasaki , Wataru Takeuchi, Zin Mar Lar Tin San, Kyaw Zaya Htun, Thet Hnin Aye and Shelly Win (2018). Flood Hazard Assessment of Bago River Basin, Myanmar. Journal of Disaster Research Vol 13, No 1
- Seemanta Sharma BHAGABATI (2018). Development of a near-real time flood inundation analysis system for a deltaic flat river basin in a data-scarce region: Case of the Bago River basin, Myanmar, Ph.D. Dissertation, University of Tokyo
- Shelly Win (2018) Flood Hazard Mapping and Economic Damage assessment in the Bago River. Ph.D. Dissertation.YTU.
- Tin Zar Oo (2018) Flood Simulation Using SOBEK Flood Model (A Case Study in Bago River Basin). Master Dissertation, YTU.